

Presented by Kimberly Forde-Folle, USDA, APHIS, VS, Centers for Epidemiology and Animal Health, Fort Collins, Colorado

Applications of the North American Animal Disease Spread Model (NAADSM)

- Estimate magnitude of consequences for risk analyses
- Evaluate disease control strategies, plans, and policies
- Assess potential economic impacts and associated control measures

- Estimate resources needed in the event of an outbreak
- Targeting areas for preparedness and surveillance
- Create simple scenarios for teaching or complex scenarios for analysis
- Provide realistic scenarios for exercises

Outline

- 1. Who, what, where, when, why, & how?
- 2. Resulting scenarios
- 3. Major outcomes

<u>Who</u> requested a realistic scenario?

- National Veterinary Stockpile (NVS)
 - Homeland Security Presidential Directive 9
 - Designed to augment local/State resources by deploying supplies within 24 hours
- Federal Area Offices
- State Departments of Agriculture

<u>What</u> did we do?

Developed realistic scenarios for four table-top, discussion based exercises

<u>Where</u> and <u>when</u> did we do this?

- North Carolina
 - July, 2006
- Georgia
 - October, 2006
- Delaware
 - September, 2007
- South Carolina
 - September, 2008

<u>Why</u> did we do this?

- 1. Identify personnel resources needed to respond to an HPAI event
- 2. Identify equipment and supplies for possible inclusion in the NVS
- 3. Refine procedures for deploying the NVS
- 4. Exercise portions of State response plans

Literature search

- Information from 38 different sources was found to be applicable
 - Text books
 - Peer-reviewed literature
 - Descriptive reports of previous outbreaks
 - Conference proceedings
 - Response plans
 - OIE website

Solicited Expert Opinion

- Poultry Specialists in North Carolina & Georgia
 - Consultants
 - Government employees
 - Extension agents
- Mapped the production process

Define control strategies

- Response Plan
 - Will you depopulate detected diseased flocks?
 - Will detection trigger a ring?
 - What will the radius of the ring be?
 - Will you pre-emptively depopulate flocks?
 - Will you depopulate direct contacts?
 - Will you depopulate indirect contacts?
 - Will you vaccinate?

Define control strategies

- Emergency Management Staff
 - What method of depopulation will you use?
 - How many resources are available to accomplish vaccination and depopulation?
 - How many flocks can be depopulated/day?
 - How many flocks can be vaccinated/day?
 - How will you prioritize efforts if you get behind?

Population information

- State or industry owned data
 - North Carolina Multi-Hazard Thread Database
 - Georgia Poultry Industry Database
 - Delmarva Poultry Industry Database
 - South Carolina National Animal Identification System (NAIS) Database

Resulting Scenarios

- Output associated with each scenario was one example of potential scope and impact that a HPAI outbreak may have in each of the respective States
 - 63 days
 - 25 backyard flocks (4,070 birds)
 - 15 broiler flocks (1,128,280 birds)
 - 2 broiler pullet flocks (51,834 birds)
 - 143 days
 - 167 backyard flocks (90,239 birds)
 - 43 broiler flocks (3,108,000 birds)
 - 1 egg type layer flock (32,000 birds)
 - 4 meat type breeder flocks (69,000 birds)
 - 16 days
 - 1 backyard flock (65 birds)
 - 1 broiler pullet flock (50,000 birds)
 - 4 Roaster flocks (343,400 birds)
 - 9 broiler flocks (632,400 birds)

Major Outcomes

- Identified material requirements to be stockpiled
- Identified gaps in combined federal, State, and industry resource capabilities
- Provided a realistic assessment of the scope and limits of the NVS
- Identified capabilities needed to effectively deploy NVS resources
- Exercised portions of State response plans
- Brought together federal and State agencies, the private sector, and others involved in a response